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We study a one-dimensional spin (interacting particle) system, with product
Bernoulli (p) stationary distribution, in which a site can flip only when its left
neighbor is in state +1. Such models have been studied in physics as simple
exemplars of systems exhibiting slow relaxation. In our ‘‘East’’ model the
natural conjecture is that the relaxation time y(p), that is 1/(spectral gap),
satisfies log y(p) ’ log2(1/p)

log 2 as p a 0. We prove this up to a factor of 2. The upper
bound uses the Poincaré comparison argument applied to a ‘‘wave’’ (long-range)
comparison process, which we analyze by probabilistic techniques. Such com-
parison arguments go back to Holley (1984, 1985). The lower bound, which
atypically is not easy, involves construction and analysis of a certain ‘‘coalescing
random jumps’’ process.

KEY WORDS: Constrained Ising model; coupling; exponential martingale;
Poincaré inequality; relaxation time; spectral gap.

1. INTRODUCTION

The asymmetric one-dimensional constrained Ising model, or more briefly
the East process, is an interacting particle system with sites Z1 and each site
having two states {0, 1}={unoccupied, occupied}. Its essential qualitative
feature is that a site can change state only when the site to its left is
occupied. The flip rates at each site i are specified by:

• if site i−1 is in state 0 then state i cannot change;

• if site i−1 is in state 1 then state i flips 0Q 1; rate p1Q 0; rate 1−p



where 0 < p < 1 is a parameter. Here is an equivalent description. Each
particle, at rate 1 (that is, the times of a Poisson (1) process) sends a
‘‘pulse’’ to the site to its East, and the state of that site is reset via

P(occupied)=p, P(unoccupied)=1−p

A careful construction of the process is outlined in the Appendix. By
routine arguments the i.i.d. Bernoulli (p) measure is the unique non-trivial
stationary distribution and this East process is reversible. Write (X(t),
0 [ t <.)=((Xi(t), i ¥ Z), 0 [ t <.) for the stationary process. We are
interested in studying the relaxation time (defined as 1/spectral gap), say
y(p), as p a 0. This specific process, and questions concerning its relaxation
time, were introduced by Jäckle and Eisinger (1) and further studied in the
physics literature in. (2–4) Sollich and Evans (5) argue non-rigorously that

log y(p) ’
log2(1/p)
log 2

as p a 0 (1)

(log is natural logarithm), and observe that (1) is consistent with Monte
Carlo simulations. Section 2.3 outlines a simple heuristic argument. The pur-
pose of this paper is prove rigorous bounds which support this conjecture.

Theorem 1.

(a) log y(p) [ ( 1log 2+o(1)) log
2(1/p) as p a 0.

(b) log y(p) \ ( 1
2 log 2−o(1)) log

2(1/p) as p a 0.

The proof of the lower bound (b), outlined in Section 5.1 with details
in Section 5.2, involves the usual method of applying the variational
characterization (3) to a suitable test function g. But unusually, finding
a good g is not intuitively simple, and in fact we define g only implicitly
in terms of a certain coalescing random jumps process which we need to
invent. Section 5.3 motivates this particular process. A more inspired
choice of g might allow one to remove the factor 12 from the lower bound
and thus prove the conjecture (1).
The proof of the upper bound (a) uses the Poincaré comparison

method, used by Holley (6, 7) and developed by Diaconis and Saloff-Coste, (8)

which bounds the relaxation time of one process in terms of the relaxation
time of another ‘‘comparison’’ process with the same stationary distribu-
tion. Though the simplest comparison process would be the process in
which sites flip independently, making the comparison with this process
seems technically difficult. Instead, following an idea used by Holley, (7) we
use for comparison a certain ‘‘long range’’ process, which for us is (Section 3)
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the following wave process, For each particle (at site i, say) at rate 1 a wave
appears which, in the 10/p sites to the right of i, deletes existing particles
and replaces them by an independent Bernoulli (p) family of particles.
Proposition 7 shows that for small p the relaxation time of the wave
process is bounded by the constant 10/3. The proof (Section 3.2) uses
probabilistic methods: coupling and supermartingale estimates for the
position of the rightmost particle in the wave process started from a single
particle. Section 4 gives the argument comparing the East process with the
wave process.

1.1. Remarks on Related Models and Techniques

1. The East model is a special case of more general constrained or
facilitated spin models on lattices, in which a site is permitted to flip only
when some prescribed number of neighbors are in state 1. Such models go
back to Frederickson and Anderson, (9) and a recent review is in Pitts
et al. (10) The models are intended to illustrate the slow relaxation behavior of
liquids near the glass transition. Our methods are tied closely to the speci-
fics of the East model, but making rigorous the treatments in ref. 10 con-
cerning other models would be an interesting challenge. A specific next
model one might study is to take as site space the infinite rooted binary
tree, and allow flips at a site only when both children of that site are in
state 1. In this model it is easy to show

y(p) \ c(p− 12)
−2, p > 1/2

and one would like to prove the corresponding upper bound. Apparently
much harder is the North-East model, where site space is Z2 and flips are
allowed at (x, y) only if sites (x−1, y) and (x, y−1) are both in state 1.
Here one would like to find a critical exponent a > 0 such that

y(p) ’ c(p−pcrit)−a as p a pcrit

where pcrit is the critical value for oriented percolation of 0-sites.
In the terminology of ref. 10 our model should be called the West

model; we reversed direction to make site labeling more natural.

2. Since Diaconis and Stroock (11) there have been many papers
studying relaxation times for Markov chains on various ‘‘combinatorial’’
state spaces via the basic comparison method (implicitly comparing the
given chain with the i.i.d. chain). Comparisons with some judiciously-
chosen alternate chain were used in ref. 8 to study the exclusion process, and
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in ref. 12 for other statistical physics models. Martinelli (13) uses such
arguments in studying the subcritical two-dimensional Ising process.

3. One might suppose that general results for one-dimensional Ising-
type models implied

y(p) <. for each p > 0 (2)

But the usual general results such as Holley (7) implicitly assume flip rates
are strictly positive and so do not apply to the East process. So even (2)
may be a new result. Note also that the East process is not monotone (or
attractive) in the sense of interacting particle systems. (14) Our extension
coupling in Section 3.1 uses a weaker structural property.

4. For any stationary reversible Markov process X(t), there are two
useful ways of viewing the relaxation time y. One is via the ‘‘infinitesimal
time’’ Rayleigh–Ritz variational characterization (e.g., ref. 15, Eq. (6.2.10)):

y=sup
g

var g
E(g, g)

(3)

where var g is the variance of g(X(0)); and

E(g, g)=1
2 lim
t a 0
t−1E(g(X(t))−g(X(0)))2

The other is via the finite-time maximal correlation property:

sup
f, g
cor(f(X(0)), g(X(t))=exp(−t/y), 0 [ t <. (4)

where cor denotes correlation. In general the sups are over all square-
integrable functions; in our setting of interacting particle systems, in (4) we
may restrict to bounded functions depending on only finitely many sites.
See the Appendix. Our arguments are purely finitistic—we derive estimates
of the spectral gap for the East process on states {0, 1,..., n} which are
uniform in large n—and we downplay the routine abstract arguments
needed to pass to the limit infinite-site models.

5. As well as the (mathematically natural) relaxation time y(p) of
the whole East process, it is physically natural to consider the single-spin
asymptotic relaxation time y0(p) defined in terms of the stationary process
by

P(X0(t)=1|X0(0)=1)−p=exp 1−
t

y0(p)±o(1)
2 as tQ.
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One immediately has y0(p) [ y(p) and one expects equality, but there is no
simple general proof of equality.

6. The procedure for deriving the East process from Glauber dynamics
for product measure has a natural abstraction to arbitrary reversible Markov
processes. Taking for simplicity finite state space X, let Q(x, y) be the
transition rate matrix and p the stationary distribution of a reversible
chain, and let S be a symmetric subset of X×X. Then the derived chain

Q̂(x, y)=Q(x, y) 1(y ] x, (x, y) ¥ S)

is reversible with the same stationary distribution p. The variational prin-
ciple immediately implies that the relaxation time for the derived chain
cannot be smaller than for the original chain. Upper bounding such relaxa-
tion times, when the original chain is, e.g., the usual Glauber dynamics for
the Ising model, is a natural open problem.

2. HEURISTICS

Our proofs are indirect, because we are unable to do sharp calcula-
tions directly with the East process. Underlying our proofs is an intuitive
visualization of how the process evolves, which we shall outline in this
section.

2.1. Visualizing a Realization

Fix small p. A typical particle at a typical time is isolated from other
particles by a distance of order 1/p. Figure 1 illustrates schematically
a realization of the East process from an isolated particle at site 0.
The moral of Fig. 1 is that, starting from an isolated particle, it takes a

long time to reach a configuration with another particle at some distance
1° d° 1/p from the original particle; and such configurations tend to
relapse back to the original configuration.

2.2. Minimum-Energy Paths

For this section, take the site-space to be Z+ but consider only finite
configurations. Write |x| :=; i xi for the number of particles in configura-
tion x. A natural metric (in fact, an ultrametric) on configuration space is

h(x, x −) := min
paths(xj) from x to xŒ

max
j
|x j| (5)
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Fig. 1. Schematic representation of successive configurations in the East process started
from a particle at site 0. Columns represent consecutive time intervals. From configuration ••
the process is much more likely to make a transition to • than to •••; column 1 represents an
order 1/p number of cycles •Q ••Q • before first attaining •••. From there, it is unlikely to
make a transition to •••• but instead is equally likely to transition to •• or to • p •. Column 2
indicates that either of the latter options will likely cause the process to return to •. It there-
fore requires order 1/p more cycles •Q •••Q • before first attaining ••••. From there it is
possible to reach a locally recurrent configuration • p p • (column 3) but the process will sub-
sequently return to •••• and the other likely possibilities lead (column 4) back to •.

where the minimum is over paths x=x0, x1, x2,..., x − such that each suc-
cessive pair (x j, x j+1) is a possible transition of the East process. This is
natural because, in the usual statistical physics picture, the relative proba-
bilities of configurations x depend only on |x|, which we can interpret as
determining the energy of x, so that h(x, x −) is the (absolute) height of the
‘‘energy barrier’’ separating the configurations. Note that, in contrast to
most interacting particle models, if x − differs from x only by virtue of
moving an isolated particle to an adjacent site, then x and x − are not close
in the h metric; there is no short or low-energy path between them.
Write d0+di+·· · for the configuration consisting of particles at sites

0 and i and ... . Figure 2 illustrates a recursive construction, which easily
proves the following Lemma. This kind of result has certainly been noted
in the physics literature, e.g., ref. 3, Sections 4 and 5 show there is in fact
equality in (6). Chung et al. (16) give further analysis of such combinatorics.
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Fig. 2. A path from d0 to d0+d4 (left column) is used to define a path from d0 to d0+d8.
The latter path has length 3 times the former length, and uses one extra particle.

Lemma 2. Let m \ 0. There exists a path from configuration d0 to
configuration d0+d2m of length 3m such that the maximum of |x| over
configurations x on the path equals m+2. In particular

h(d0, d0+d2m) [ m+2 (6)

2.3. Heuristic Analysis of y(p)

A very crude heuristic analysis (which may be regarded as a summary
of the non-rigorous argument in ref. 5) involves the following two ideas.

(i) Write s(p, j) for the mean time for the East process started at d0
to reach some configuration with site j occupied. Since particles are typi-
cally separated by distance 1/p, the relaxation time should be roughly
s(p, 1/p), since this is the time until a particle has some influence on its
initial nearest neighbor particle.

(ii) Lemma 2 suggests that getting from configuration d0 to a con-
figuration with a particle at site j involves an ‘‘excursion’’ going over an
energy barrier of height roughly h=log2 j, in other words through config-
urations of probability roughly ph. An excursion required to pass through
states of some exponentially small probability q should take time roughly
1/q. So s(p, j) should be roughly (1/p)h.

Combining (i) and (ii) suggests y(p) % s(p, 1/p) % (1/p) log2 1/p, which
is (1).

2.4. A Continuum Limit Process?

We would like to prove the following conjecture (in which the t(p)
would be, up to constant factors, the relaxation times y(p)) concerning the
extent of the ‘‘excursions’’ above.
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Conjecture 3. Let X0(t) be the East process on sites Z+, started
from a single particle at site 0. Let r(x) be the rightmost occupied site
in configuration x. Then there exist constants t(p) and a function G(x),
0 < x <. such that, for all w(p) a 0 sufficiently slowly,

P 1 sup
0 [ s [ w(p) t(p)

r(X0(s)) >
x
p
2 ’ G(x) w(p) as p a 0 with x fixed (7)

If this were true with suitable tail conditions on G( · ), it would follow
quite easily (using the qualitative properties of Section 3.1) that as p a 0
the stationary East process on Z, rescaled by taking sites to be distance
p apart and speeding up time by t(p), converges to a limit process (X(t),
0 [ t <.) described as follows.

(a) At fixed time t, X(t) is a Poisson (rate 1) process of particles
on R.

(b) Each particle creates ‘‘waves’’ of random lengths, the rate of
creation of waves of length > l being G(l).

(c) A wave (x, x+l] instantaneously deletes all particles in (x, x+l]
and replaces them by a Poisson (rate 1) process of particles on (x, x+l].

But proving the conjecture seems difficult; we do not have even a
heuristic derivation of a formula for G(x).

3. THE WAVE PROCESS

In this section we take the site space to be Z+ :={0, 1, 2,...}. We
generalize the East process by introducing, in addition to 0 < p < 1,
a second parameter v ¥ {1, 2, 3,...}, and prescribing transition rates as
follows.

Each particle (at site i, say) at rate 1 creates a ‘‘wave’’ of length v,
which instantaneously deletes any particles in sites {i+1, i+2,...,
i+v} and replaces them by an i.i.d. Bernoulli (p) process of
particles on sites {i+1, i+2,..., i+v}.

Also specify that site 0 is always occupied. We call this the wave
process, and write it as W(t)=(Wi(t), i ¥ Z+). The particular case v=1 is
the East process. It is easy to check that the general wave process is revers-
ible and its stationary distribution is i.i.d. Bernoulli (p) on sites {1, 2,...}
with the fixed particle at site 0.
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In Section 3.1 we give some qualitative properties which do not
depend on v; then in Section 3.2 we give a quantitative bound on the
relaxation time for large v.
If I is an interval of sites then we writeWI(t) for the restriction to sites

I ofW(t).

3.1. Qualitative Properties of the Wave Process

The first two properties are intuitively obvious from the definitions; we
will not spell out details.

Consistency. One could define the wave process on a finite site
space {0, 1, 2,..., i0}. These processes are consistent as i0 varies. In other
words, taking first the wave process W on sites Z+, the restricted process
W[0, i0] is distributed as the wave process on sites {0, 1, 2,..., i0}.

Conditional Independence. In the setting above, condition on the
entire restricted process (W[0, i0](t), 0 [ t <.) and on the times sj and
right endpoints rj of waves emanating from sites in [0, i0] which have
rj > i0. Then conditionally, the process W[i0+1,.)(t) evolves as the wave
process, except that at times sj the sites in [i0+1, rj] are reset to i.i.d.
Bernoulli (p).
We next spell out a slightly more subtle conditional stationarity prop-

erty. Consider the wave process started at time 0 with an arbitrary initial
configuration x(0), and with an arbitrary initial particle distinguished. At
each subsequent time exactly one particle is distinguished, according to the
following rule. Once distinguished, a particle (at site j say) remains distin-
guished until the first time some wave emanates from some site i ¥
{jv, jv+1, ..., j−1} and at that time the particle at site i becomes the dis-
tinguished particle.
Let q(t) be the position of the distinguished particle at time t.

Lemma 4. Fix an interval of sites I=[i0, i1]. Suppose the initial
random configuration W(0) has a particle at site i0, the distinguished par-
ticle, and has i.i.d. Bernoulli (p) distribution on (i0, i1]. For each t, condi-
tional on {q(t)=i −}, the distribution of W[iŒ+1, i1](t) (that is, of the wave
process at time t on sites {i −+1, i −+2,..., i1}) is i.i.d. Bernoulli (p).

Proof. Let 0 < U1 < U2 < · · · be the times when the distinguished
particle changes. Let W(Uj−) and W(Uj) be the configurations before and
after the change. Inductively suppose that conditional on Uj and on
{q(Uj)=i −}, the distribution of W[iŒ+1, i1](Uj) is i.i.d. Bernoulli (p). And site
i − is occupied at time Uj. It follows from the basic stationarity property (of
the wave process on Z+, translated to [i −,.)) that in the absence of waves
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crossing into [i −,.) from below, the distribution at any subsequent time t
of W[iŒ+1, i1](t) will be i.i.d. Bernoulli (p). By the conditional independence
property, the distribution of W[iŒ+1, i1](Uj+1−) is also i.i.d. Bernoulli (p),
and this remains true conditionally on Uj+1. Given q(Uj+1)=i' < i −,
the configuration W[iœ+1, i1](Uj+1) consists of the existing configuration
W[rj+1, i1](Uj+1−) (which is i.i.d. Bernoulli (p)), together with the new con-
figuration on [i'+1, rj] created by the wave, which is also i.i.d. Bernoulli
(p), thus making the whole configuration W[iœ+1, i1](Uj+1) have i.i.d.
Bernoulli (p) distribution. This carries the induction forward, and
establishes the lemma. L

We next give a coupling construction. Let x0 and x1 be configurations
on Z+. Say x1 is an extension of x0 if x0 has only a finite number of
occupied sites and if the two configurations coincide on [0, r], where
r=r(x0) is the position of the rightmost particle of x0. In other words,
x1 consists of the particles in x0 and (perhaps) extra particles at arbitrary
positions greater than r.

Lemma 5. Suppose x1 is an extension of x0. Then there exists a
coupling ((W0(t),W1(t)), 0 [ t <.) of the wave processes with initial
configurations x0 and x1 such that at each time t, the configurations W1(t)
andW0(t) coincide on sites [0, sup0 [ s [ t r(W0(s))].

Call this the extension coupling.

Proof. Suppose x1 is an extension of x0. Then we can couple transi-
tions of the joint process from these configurations by specifying that when
a wave emerges from a particle (site i, say) of x1 and creates new particles,
then if site i contains a particle of x0 we copy the wave and the positions of
new particles in the other process, and otherwise do nothing. This clearly
maintains the ‘‘extension’’ property. Furthermore, if x0 and x1 coincide on
sites [0, rg] for some rg \ r(x0) then the two coupled processes will always
agree on that interval. L

Now let (W0(t), 0 [ t <.) be the wave process on Z+ started with
only one particle at site 0. Let Rt=r(W0(t)) be the site of the rightmost
particle ofW0(t).

Lemma 6. Suppose there exists l > 0 such that for each i0

P( sup
0 [ s [ t

Rs [ i0)=O(e−lt) as tQ. (8)

Then the wave process on Z+ has spectral gap at least l.
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Proof. Fix i0 and write I=[0, i0]. Let W0(t) be as above, let W(t)
be the stationary wave process and let Wg(t) be the wave process started
with arbitrary initial configuration xg. By Lemma 5 we can couple W0 and
W such that

P(W0
I(t) ] WI(t)) [ P( sup

0 [ s [ t
Rs < i0)

Similarly we can coupleW0 andWg such that

P(W0
I(t) ] Wg

I (t)) [ P( sup
0 [ s [ t

Rs < i0)

So, writing || · || for variation distance,

sup
x
||P(WI(t) ¥ · |WI(0)=x)−pI( · )|| [ 2P( sup

0 [ s [ t
Rs < i0) (9)

where pI is i.i.d. Bernoulli(p) distribution on I. In a finite-state reversible
chain, the spectral gap equals the exponent in the asymptotic rate of con-
vergence to stationarity, and so (9) and (8) imply that the restricted chain
W[0, i0] has spectral gap at least l. Since this bound is uniform in i0 it
extends by consistency to the wave process on sites Z+ (see Appendix for
more details).

3.2. The Supermartingale Analysis

Here is the main result of Section 3.

Proposition 7. If v=v(p) > 10p+2 then the spectral gap of the wave
process on Z+ is at least 3/10, for sufficiently small p.

In outline, the idea is to apply Lemma 6. To prove (8) for some given
l it would suffice to show that for some h > 0

exp(lt−hRt) is a supermartingale (10)

For then E exp(−hRt) [ e−lt and so P(Rt [ x) [ ehxe−lt. Unfortunately (10)
cannot be exactly true, because there are ‘‘bad’’ configurations from which
Rt tends to decrease rather than increase (for instance, if sites Rt−v
through Rt−v+100 are occupied but sites Rt−v+101 through Rt−1 are
unoccupied). So we use a more elaborate argument which finesses bad con-
figurations by establishing the supermartingale property only at embedded
random times (Lemma 8). Incidently, one could modify the wave process

Constrained Ising Model 955



by allowing the waves to have random length V, and taking V to have
geometric distribution with sufficiently large mean the supermartingale
property (10) would be easy to verify. However, using unbounded V would
make the comparison argument in Section 4 become more complicated.

Proof of Proposition 7. Write v0=K5/pL, so v \ 2v0. We first con-
sider the wave process on Z+, started at time 0 with some arbitrary finite
configuration of particles. Write R0 for the position of the rightmost par-
ticle at time 0. Let U be the first time that either a wave emerges from the
particle at R0 or the particle at R0 is removed by a wave emanating from
another particle. Let T \ U be the time of the first wave whose right end
is \ R0+v0. Note that T ] U only in the case where the particle at R0
is removed by a wave whose rightmost limit is between R0 and R0+v0; this
is the case whose analysis is more difficult. Fix some 1 > l > 0 and define

Mt=exp(lt−
p
2 Rt)

Lemma 8. Let p be sufficiently small. For any finite initial configu-
ration,

EMTN (U+1) [
el−1

1−l
M0, 0 < l < 1

Here TN (U+1) :=min(T, U+1). The proof has three parts. At (12)
we show that T [ U+1 is the likely alternative. At (11) we show that RT
tends to be larger than R0 on {T [ U+1}. At (14) we show that RT will not
be much larger than R0 on {T > U+1}.

Proof of Lemma 8. We first argue

E (exp(−p2 (RT−R0)) | T, U) [ 2e
−5/2+o(1) on {T [ U+1} (11)

where o(1) denotes a constant tending to 0 as p a 0. At time T there is some
wave with right endpoint y − and RT is stochastically larger than y −+1−g,
where g has geometric (p) distribution and is independent of T, U. Since
y − \ R0+v0 we see that on {T <.}

E(exp(−p2 (RT−R0)) | T, U) [ E exp(−
p
2 (v0+1−g))

[ e−5/2E exp(−pg/2)

=e−5/2(2+o(1))
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Fig. 3. Waves.

We next shall argue that for sufficiently small p

P(T > U+1) [ 1/100 (12)

(This will in fact be proved and used in a certain ‘‘conditional’’ form). If
R0 [ v0 then P(T ] U)=0 by the note above Lemma 8, because the right-
most end of any wave emanating from below R0 must be \ v \ R0+v0. So
assume R0 > v0. Condition on the restriction to sites [0, R0−v0] of the
process (W(t), 0 [ t <.), and on the times and rightmost ends (tg, xg) of
waves ending at positions to the right of R0−v0. (This conditioning is
denoted by ‘‘waves’’ in (13) below). In order that T > U+1 there must be
some first wave, at time u0, with rightmost end x0 ¥ [R0, R0+v0), and all
the other rightmost ends of waves at times before u0+1 must also be
< R0+v0. Figure 3 illustrates such waves.
By the conditional independence property (Section 3.1) the restriction

of the wave process to the sites I :=(R0−v0, R0+v0] evolves according to
the usual wave process rules, except that the waves (on which we are con-
ditioning) reset the sites they cover to i.i.d. Bernoulli (p). The conditional
probability that T > U+1 is the probability that no particle in sites I
(neither an initial particle nor a particle created by any of the conditioning
waves) has a wave emanating from it before time u0+1 (because any such
wave would have rightmost end greater than R0−v0+v \ R0+v0). We can
upper bound this conditional probability by considering only particles
created by the wave at time u0 and subsequent waves, and only sites
Ig :=(R0−v0, R0]. For each site i ¥ Ig we can decompose the time interval
[u0, u0+1] into subintervals J starting at the successive times when a wave
meets site i. Let J denote the set of such intervals J obtained by varying i,
and let (bJ, J ¥J) be the i.i.d. Bernoulli (p) random variables indicating
whether the wave created a particle at site i. The number of waves created
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by all these particles is Poisson with conditional mean M :=;J |J| bJ,
where |J| is the length of interval J. So

P(T > U+1 | waves) [ E(exp(−M) |J) (13)

Now the constraints on the family J are

|J| [ 1 -J; C
J
|J|=v0

A routine convexity argument shows that, subject to these constraints,
E(exp(−M) |J) is maximized in the case where each |J|=1. So

E(exp(−M) |J) [ E exp(−B(v0, p))

where B( · , · ) has Binomial distribution. As pQ 0 we have v0 pQ 5 and so

E exp(−B(v0, p))Q exp(−5(1−e−5)) < 1/100

giving (12).
We digress to record an elementary calculation

Lemma 9. If Y is stochastically smaller than exponential (1) then
for any event D

E exp(Y/2) 1D [ 2`P(D)

Proof. It is enough to verify the case where Y has exponential (1)
distribution and D is of the form [x,.). But in that case the asserted
inequality becomes

F
.

x
ey/2e−y dy [ 2e−x/2

which is true with equality. L

At time U there is some wave [x, x+v] with x+v \ R0. By taking
time U and interval [x, x+v] as the initial time and interval in Lemma 4,
the conclusion of that lemma easily implies that R0−RU+1+1 is stochasti-
cally smaller than geometric (p). This implies p(R0−RU+1) is stochastically
smaller than exponential (1). So by applying Lemma 9 to Y :=
p(R0−RU+1) and D :={T > U+1} gives, using (12),

E(exp(−p2 (RU+1−R0)) 1(T > U+1) | U) [ 1/5 (14)
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Now split the quantity under study in Lemma 8 over the events {T [ U+1}
and {T > U+1}:

e
p
2
R0EMTN (U+1)=EelT exp(−

p
2 (RT−R0)) 1(T [ U+1)

+Eel(U+1) exp(−p2 (RU+1−R0)) 1(T > U+1)

Consider the first term. By conditioning on T, U and using (11)

(first term) [ (2e−5/2+o(1)) EelT1(T [ U+1) [ (2e−5/2+o(1)) Eel(U+1)

Similarly, by conditioning on U and using (14),

(second term) [ 1
5 Ee

l(U+1)

Combining these two bounds,

e
p
2
R0EMTN (U+1) [ (2e−5/2+

1
5+o(1)) e

lEelU

The first term works out numerically to be < e−1. And U is stochastically
smaller than the exponential (1) time at which a wave would emanate
from the initial particle at R0, so EelU [ 1/(1−l). This establishes
Lemma 8. L

Returning to the proof of Proposition 7, choose l=3/7 to make
el−1

1−l < 1. Consider (W
0(t), 0 [ t <.), the wave process on Z+ started with

only one particle at site 0. Define stopping times 0=S0 < S1 < S2 < · · · by:

Sk+1−Sk is the time TN (U+1) defined above Lemma 8, applied
to the wave process (W0(Sk+t), 0 [ t <.).

So Lemma 8 implies that (MSk , 0 [ k <.) is a supermartingale. Fix t
and define

o :=min{k : Sk \ at}

where the constant 0 < a < 1 will be specified later. Now

1 \ EMSo (optional sampling theorem)

\ EMSo1(R(So) [ x)

\ exp(lat−px/2) P(R(So) [ x)

implying

P(RSo [ x) [ e
px/2e−lat (15)
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We next need to bound the ‘‘overshoot’’ So−at. Lemma 10 below implies
P(So−at \ 1+u) [ e−u, 0 [ u <. and hence

P(So > t) [ e · e−(1−a) t (16)

Finally,

P ( sup
0 [ s [ t

Rs [ x) [ P(RSo [ x)+P(So > t)

[ 2e1Npx/2e−max(la, (1−a)) t by (15), (16)

Having specified l=3/7 we now specify a=7/10 and the bound is
O(e−3t/10) as tQ.. So Proposition 7 follows from Lemma 6.

Lemma 10. So−at is stochastically smaller than 1+g, where g
denotes an exponential (1) r.v.

Proof. Write t0=at, so that o=min{k: Sk \ t0}. Regard time t0 as
the present, and condition on the past (W0(t), 0 [ t [ t0). The conditioning
tells us the time So−1 and the position of the rightmost particle R0=r(So−1)
at that time. Resetting time to restart at time So−1, we are in the setting of
Fig. 3, with initial configurationW0(So−1). Now So−So−1=TN (U+1); we
see from the conditioning that TN (U+1) > t1 :=t0−So−1 (the present time
is now t1) and we are interested in the distribution of the overshoot
z :=(TN (U+1))−t1. If U [ t1 then z [ 1 and we are done, so suppose
U > t1. In that case the rightmost particle at time t1 is still the particle at
site R0, and the future waiting time until U is at most the exponential time
g until a wave would emanate from the particle at R0. So z [ 1+g and we
are done. L

Remark. Lemma 10 is slightly subtle; the fact that the conditional
distributions of Sk−Sk−1 are stochastically smaller than 1+g is not enough
to get a bound on overshoots.

3.3. The Wave Process on Z

Going from the wave process on Z+ to the wave process on Z involves
some easy arguments which we shall just outline. Consider first a branching
random walk B(t), in which each site may have more than one particle, and
particles independently at rate 1 create a wave of offspring, one at each of
the v sites to the right of the parent particle, with particles never being
killed. It is well known that (in discrete time, starting from a single particle)
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the position r(B(t)) of the rightmost occupied site grows asymptotically at
a finite linear rate, (17) and the same arguments give the essentially weaker
conclusion of the next lemma.

Lemma 11. For the branching random walk B(t) where initially all
sites in (−., 0) are occupied by a single particle,

lim
LQ.

P(r(B(t)) > L)=0, t fixed

Next, observe there is a ‘‘basic coupling’’ of two versions of the wave
process, as follows. If a site i is occupied in each version, make the wave-
times from i and subsequent replacements be identical; for sites which are
unmatched (occupied in one version only) let the waves occur indepen-
dently. It is easy to check the following.

Lemma 12. Given two initial configurations for the wave process
W (1)(0) and W (2)(0), let B(0) be the set of unmatched sites. Then the basic
coupling (W1(t),W2(t)) can be constructed jointly with the branching ran-
dom walk B(t) such that for each t the set of unmatched sites (W1(t),W2(t))
is a subset of the set of occupied sites in B(t).

Now write W(t) for the stationary wave process on sites Z+. Let sL be
the shift map taking (xi, i \ 0) to (xi−L, i \ 0).

Lemma 13. As LQ. the processes sL(W(t)) converge weakly to a
processW2 (t), the stationary wave process on sites Z.

Proof. It is enough to show that we can couple sL1 (W(t)) and
sL2 (W(t)) such that, for fixed t and i0, as

L1 Q., L2 Q., L1 < L2

we have

P(sL1 (W(t))|i=sL2 (W(t)) |i -i \ i0)Q 1 (17)

Use the basic coupling above, where the initial configurations coincide
except on sites [−L2, −L1), and Lemma 12 to show that the probability in
(17) is at least

P(r(B(t)) < i0)
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where B(0) has no particles outside [−L2, −L1). Use Lemma 11 to show
this probability Q 1 as L1 Q.. L

From the ‘‘maximal correlation’’ interpretation (4) of relaxation time,
using functionals depending on only finitely many sites, one sees that for a
weakly convergent sequence of interacting particle systems, the relaxation
time of the limit is at most the limit of the relaxation times. So the bound
from Proposition 7 goes through to the limit in Lemma 13:

Corollary 14. If v=v(p) > 10p+2 then the spectral gap of the wave
process on Z is at least 3/10, for sufficiently small p.

4. THE COMPARISON ARGUMENT

4.1. The General Inequality

Proposition 15 states the general inequality we use, in our setting of
the East process X and the wave process W (on state space Z, with the
same parameter p). Readers unfamiliar with this kind of comparison
argument should consult Diaconis and Saloff-Coste, (8) where examples in
the less technical finite-space setting are explained carefully.
Let QX( · ) be the equilibrium flow measure on the space X of possible

transitions (x, x −) of X. That is, the first marginal of QX is the stationary,
Bernoulli (p), law and the conditional law is the transition rate. Let QW( · )
be the equilibrium flow measure forW. For each possible transition (w, w −)
of W, define a path w=x(0), x(1),..., x(l)=w − whose steps (x(i−1), x(i))
are possible transitions of X, and write N(w, wŒ)( · ) for the counting measure
on X which counts the transitions (x(i−1), x(i)). Then define a measure
on X by:

Q̃( · ) :=FN(w, wŒ)( · ) QW(dw, dw −) (18)

Proposition 15. Suppose we can choose paths such that, for con-
stants B, L <.,

(i) each path length is at most L

(ii) the density dQ̃/dQX is bounded a.e. by B (see Remark below).

Then the relaxation times of the two processes satisfy

y(X) [ BLy(W)
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Diaconis and Saloff-Coste (8) Theorem 2.1 prove this in the discrete
time, finite state space setting, but since the argument rests only on the
general variational characterization (3) and a Cauchy–Schwarz bound, it
extends to our setting without essential alteration. See Lemmas 1.13—1.17
of Holley. (7)

Remark. If we were on a finite state space then (18) could be written
as a sum

Q̃(x, x −) := C
(w, wŒ)

N(w, wŒ)(x, x −) QW(w, w −)

One compares this quantity with QX(x, x −) by considering the ratio

Q̃(x, x −)
QX(x, x −)

=
dQ̃
dQX (x, x

−) say

The Radon–Nikodym density in (ii) is the analogous function dQ̃

dQX (x, x
−) in

the infinite-site setting.

4.2. Applying the Comparison Inequality

The ‘‘distinguished paths’’ required to implement the comparison
method are readily constructed in terms of the ‘‘minimum energy’’ paths of
Lemma 2. At many places the bounds are crude.

Lemma 16. Let m \ 1. Take site space [0, 2m] with site 0 always
occupied. Let W and W − be independent with Bernoulli (p) distribution on
sites [1, 2m]. Then we can construct a path from W to W − of length 2 · 3m,
using only possible transitions of the East process, such that for each
configuration x

E(number of exits of path from x) [ 2 · 3mp |x|−m−2 (19)

Proof. Write (x̂(u), 0 [ u [ 3m) for the path from configuration d0 to
configuration d0+d2m given in Lemma 2. Given an arbitrary configuration
w with 0 occupied, for each i ¥ [0, 2m] write si=min{u \ 0 : x̂i(u)=1} and
set

xi(u)=x̂i(u)+1(wi=1)1(u < si)
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Fig. 4. A path from d0+d3+d6 to d0+d8.

As illustrated in Fig. 4, this constructs a path (x(u)) of length 3m from w to
d0+d2m; sites initially occupied in w remain occupied until the x̂ path first
makes the site occupied, but then behave as in the x̂ path. Joining two such
paths back-to-back constructs a path of length 2 · 3m between arbitrary
configurations w and w −. It is now enough to show that, for a fixed step u
(w.l.o.g. u [ 3m−1), when w has the Bernoulli (p) distribution,

P(x(u)=x) [ p |x|−m−2 -x

By Lemma 2 we have |x̂(u)| [ m+2. So if |x| > m+2 then there are at least
|x|−m−2 sites which are occupied in x but not in x̂(u); in order for
x(u)=x it is necessary that all these sites be occupied in the initial w, which
has chance p |x|−m−2. L

Return to the setting of Proposition 15, and suppose the wave process
has waves of length v=2m. A possible transition (w, w −) of the wave
process involves a wave from some site i and only affects sites [i, i+2m].
Use the path from w to w − constructed in Lemma 16. So condition (i) in
Proposition 15 holds with

L=2·3m (20)

We shall argue that condition (ii) holds with

B=2m · 2 · 3mp−m−2(1−p)−2
m

(21)

To argue this, fix some transition (x, x −) of the East process, and suppose it
is site j that flips in this transition. For this to be a step along the distin-
guished path from w to w −, the wave involved in the transition (w, w −) must
come from some site i ¥ [j−2m, j−1]. We get an exact expression

dQ̃
dQX (x, x

−)= C
j−1

i=j−2m
1(xi=1)

pG(x[i, i+2m])
p(x[i, i+2m]) q

(22)
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where

• x[i, i+2m] denotes x restricted to sites [i, i+2m];

• p(x[i, i+2m]) is its Bernoulli (p) probability;

• q(=p or 1) is the transition rate from x to x −;

• G(x[i, i+2m]) is the expected number of transitions from x[i, i+2m] to
x −[i, i+2m] in the Lemma 16 path between two configurations which have site
i occupied and which are independent Bernoulli (p) on [i, i+2m].

Use the inequalities

q \ p

p(x[i, i+2m]) \ p |x[i, i+2
m]|(1−p)2

m

G(x[i, i+2m]) [ 2 · 3mp |x[i, i+2
m]|−m−2 (Lemma 16)

1(xi=1) [ 1

to show that the right side of (22) is bounded by the quantity in (21).

Proof of Theorem 1(a). Combining Proposition 15, with estimates
(20) and (21), with Corollary 14 shows that if p is sufficiently small and

2m \ 10
p+2 (23)

then

y(p) [ 10
3 · 2

2 · 18mp−m−2(1−p)−2
m

Choosing the smallest m=m(p) which satisfies the constraint (23),

y(p) [ b(1/p)(1/p)m as p a 0

where b(1/p) is polynomial in 1/p. This establishes Theorem 1(a).

5. PROOF OF THE LOWER BOUND

5.1. Overview of Argument

We shall derive the lower bound by applying the variational charac-
terization (3) to a suitable test function g. In many settings, some ‘‘simple
and intuitively natural’’ choice of test function g gives a good lower bound,
but here we proceed more indirectly by using a function defined in terms of
a different stochastic process, the CRJ process defined below. Heuristically,
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the CRJ process is designed as a caricature of the East process started from
all 1’s, where the occupied sites of the CRJ process at time t mimic the sites
in the East process which have been occupied throughout the time interval
[0, t]. The idea (cf. Section 2.3) is that the time for a particle at site i to be
influenced by its nearest-to-the-left particle at site j < i should be % p j− i.
So we envisage ‘‘intervals on which the East process has reached local
equilibrium’’, such intervals labeled by the left endpoints, and we envisage
intervals merging at rate p i− j. We think of the CRJ an an ‘‘approximate
dual’’ of the East process, analogous to the well known exact duality
between coalescing random walks and the voter model. (14)

Here is the precise definition. Fix p and throughout this section set
n=N1/pM. Let S ı {1, 2,..., n} be a non-empty set of sites. Define the
coalescing random jumps (CRJ) process with initial state S as follows.
Initially there is one particle at each site in S 2 {0}. Each particle in S dies
at some random time, determined by the rule

The rate at which the particle at site i dies at time t equals pD(t, i),
where D(t, i) :=min{i−j : 0 [ j < i, and j alive at time t }.

When particle i dies, we shall say it coalesces with the particle at the
nearest lower-numbered site j. Eventually all particles will coalesce with the
particle at site 0. Let L=L(S) be the random site occupied by the last-to-
die particle in S. Finally, for a configuration x=(x1,..., xn} ¥ {0, 1}n define

g(x)=P(L(S) > n/2), where S={i : xi=1}

setting g(x)=0 when x is the zero vector.
It is very easy to estimate the required variance in the variational

characterization (3). Since

P(g(X(0))=0) \ P(Xi(0)=0 -1 [ i [ n)Q e−1 as p a 0

and

P(g(X(0))=1)\ P(Xi(0)=0, 1 [ i [ n/2; Xj(0)=1, for some n/2 < j [ n)

Q e−1/2(1−e−1/2) as p a 0

we see

lim inf
p a 0

var g(X(0)) > 0 (24)

So the issue is to upper bound E(g, g). This is done in the following three
lemmas, whose proofs are deferred. In brief, the idea is to define a notion
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of ‘‘good’’ configurations, and estimate separately the contributions to
E(g, g) from transitions involving good and not-good configurations.
Write a=K4 log 1/pL. Call a pair (S, i) admissible if i ¥ S ı {1, 2,..., n}

and either i−1 ¥ S or i=1. Call an admissible pair good if there exist
k1, k2 ¥ S such that

(i) the interval [k1, k2] contains i and (if i ] 1) contains i−1.
(ii) If k2 < 2k1−a then S does not intersect [k1−b, k1) 2 (k2, k2+b],

where b=k2−k1+a < k1.
(iii) If k2 \ 2k1−a then k2 [

n−a
2 and S does not intersect (k2, 2k2+a].

Let Si be the random subset of {1, 2,..., n} containing site i, and (if
i ] 1) containing site i−1, and where each other site j is in Si with proba-
bility p, independently as j varies. So (Si, i) is admissible, by construction.

Lemma 17.

P((Si, i) is not good) [ a(p)

where a(p) > 0 is a function satisfying

log a(p) ’ − log
2(1/p)
2 log 2 as p a 0

Next consider two CRJ processes started from two different initial
configurations. One can couple (i.e., define jointly) the two processes so
that, whenever a particle at site i coalesces at some time t − with a particle at
site j in one process, if sites i and j are occupied and the intervening sites
unoccupied in the other process, then at the same time t − the particle at i
coalesces with the particle at j in the other process. The remaining details
of the coupling are unimportant.

Lemma 18. Let (S, i) be admissible and good, and let |S| \ 2. In the
coupling of the CRJ processes started from S and from S0{i},

P(L(S) ] L(S0{i})) [ b(p)

where b(p) > 0 is a function satisfying

log b(p) ’ −2 log2(1/p) as p a 0

Lemma 19. E(g, g) [ a(p)+b(p).

Lemma 19 and the p a 0 asymptotics in Lemmas 17 and 18, combined
with the variational characterization (3) and the variance bound (24),
establish Theorem 1(b).
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5.2. Proofs of the Lemmas

Proof of Lemma 19. Consider the restriction to sites {1, 2,..., n} of
the East process. Write p for the Bernoulli (p) stationary distribution. The
possible ‘‘upwards’’ transitions are exactly the transitions S0{i}Q S for
admissible (S, i). Here we identify a configuration x ¥ {0, 1}n with the
subset Sx :={i : xi=1}. The stationary flow rate for such a transition is
exactly pp(S0{i}) if i \ 1, and at most this quantity if i=1. Since the
contributions to E(g, g) from upwards and downwards transitions are
equal,

E(g, g) [C
S

C
i : (S, i) admissible

pp(S0{i})(g(S)−g(S0{i}))2

Recall the definition of Si in Lemma 17. Since P(Si=S)=p(S)/p2 for
admissible (S, i), and p(S)=p(S0{i}) p/(1−p), we find

E(g, g) [ p2(1−p) C
S

C
i : (S, i) admissible

P(Si=S)(g(S)−g(S0{i}))2

Bounding ; i( · ) by n maxi( · ) and observing np2(1−p) < 1,

E(g, g) [max
i
E[(g(Si)−g(Si 0{i}))21((Si, i) admissible)]

Recall 0 [ g [ 1. By Lemma 17 the contribution to the expectation from
the event where (Si, i) is not good is at most a(p). By Lemma 18 the con-
tribution to the expectation from the event where (Si, i) is good is at most
b(p). So

E(g, g) [ a(p)+b(p)

as required. Note that the requirement |S| \ 2 in Lemma 18 eliminates only
the case (S, i)=({1}, 1), which makes zero contribution to E(g, g).

Proof of Lemma 18. Let k1, k2 be as in the definition of good.
Consider first case (ii), where k2 < 2k1−a. Define t0 by

t0 pb=pa/2; b :=k2−k1+a

Consider the CRJ process started from S. The distance from k1 to the
nearest particle to the left (i.e., at a lower-numbered site) is at least b, so

P(particle at k1 dies before time t0) [ t0 pb=pa/2
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Similarly, the distance from k2 to the nearest particle to the right is at
least b, so

P(some particle starting to the right coalesces with any particle
starting in [k1, k2] before time t0) [ t0 pb=pa/2

Now assume that the particle at site k1 has not died before time t0. Then
the chance that the particle initially at site k2 has not coalesced with the
particle at site k1 by time t0 is at most

(k2−k1) exp (−t0 pk2 −k1/(k2−k1)) (25)

To argue (25), divide the time interval [0, t0] into k2−k1 subintervals of
length t0/(k2−k1). In order for the event in question to occur, in one of
these subintervals the particle initially at site k2 must not coalesce with any
other particle. But the coalescence rate is at least pk2 −k1, so the chance of
non-coalescence over a subinterval is at most exp(−pk2 −k1t0/(k2−k1)).
Since k2−k1 < n [ 1/p, the quantity in (25) is at most p−1exp(−p1−a).

Combining these estimates, the chance that the event

(*) at time t0 all the particles initially in [k1, k2], and no other
particles, have coalesced into a particle currently at site k1

fails is at most b(p)/2, where b(p) :=4pa/2+2p−1exp(−p1−a). Now the
same argument gives the same bound for the CRJ process started from
S0{i}, replacing k2 by i−1 in the case k2=i. It follows that, in the coupl-
ing, outside an event of probability b(p) the two processes are equal at
time t0, implying that L(S)=L(S0{i}). This establishes Lemma 18 in the
case (ii).
Case (iii) is similar. Take t0=pk2+a/2 and consider the event

(**) at time t0 all the particles initially in [1, k2], and no other
particles, have coalesced into a particle currently at site 0.

Arguing as above, the chance that event (**) fails can be bounded by
pa/2+p−1exp(−p1−a). Here the first term bounds the chance that some
particle initially to the right of k2 (and hence, by (iii), to the right of
2k2+a) coalesces with the particle initially at k2; the second term bounds
the chance that the particle initially at k2 has not coalesced with the particle
at site 0. The remainder of the argument follows the previous case.

Proof of Lemma 17. We start by examining some deterministic
properties of an admissible pair (S, i) which is not good. We do the case
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i > 1; the case i=1 is similar. Set [k1(0), k2(0)]=[i−1, i] and inductively
for m=0, 1, 2, 3,... specify

(a) if k2(m) < 2k1(m)−a then

[k1(m+1), k2(m+1)]=[j, k2(m)] or [k1(m), j]

where j is the site in S0[k1(m), k2(m)] closest to the interval [k1(m),
k2(m)], breaking ties arbitrarily.

(b) If 2k1(m)−a [ k2(m) [
n−a
2 then

[k1(m+1), k2(m+1)]=[k1(m), j]

where j is the site in S 5 (k2(m), n] closest to k2(m).
The fact that (S, i) is not good implies that no pair {k1(m), k2(m)} can

satisfy conditions (ii, iii), and this implies that the inductive construction
makes sense (i.e., the required j’s exist at each step) and that (k1(m),
k2(m)) is well-defined for all 0 [ m [ m1, where

m1 :=min{m : k2(m) \ 2k1(m)−a and k2(m) >
n−a
2 }

Further, for 0 [ m < m1:

(c) if k2(m) < 2k1(m)−a then k2(m+1)−k1(m+1) [ a+2(k2(m)−
k1(m))

(d) if k2(m) \ 2k1(m)−a then k2(m+1) [ 2k2(m)+a.

Lemma 20. Define

b(m)=k2(m)−k1(m) if k2(m) < 2k1(m)−a

=k2(m) if k2(m) \ 2k1(m)−a

Then

a+b(m) [ 2m+1(a+1), m [ m1

Moreover

m1 \ m0 :=max{m : 2m(a+1) [
n−a
2 }

Proof. By (c) and (d), the inequality

b(m+1) [ a+2b(m)
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holds for all 0 [ m < m1 except perhaps for the first value of m (mg, say)
that k2(mg+1) \ 2k1(mg+1)−a. For this particular value

k2(mg+1)=k1(mg+1)+(k2(mg+1)−k1(mg+1))

[ k1(mg+1)+a+2b(mg)

[
k2(m*+1)+a

2 +a+2b(mg)

and rearranging gives

b(mg+1)=k2(mg+1) [ a+2(a+2b(mg))

In other words, if b̄(m) solves the recursion

b̄(m+1)=a+2b̄(m); b̄(0)=1

then inductively

b(m) [ b̄(m), m [ mg

b(mg+1) [ b̄(mg+2)

b(m) [ b̄(m+1), mg < m [ m1

But explicitly

b̄(m)=2m+a(2m−1)

and so

a+b(m) [ a+b̄(m+1)=2m+1(1+a)

establishing the first inequality in the lemma. For the second inequality,
from the definition of m1 we have b(m1) >

n−a
2 and hence 2

m1+1(1+a) > n−a2 .
So m1 \ m0 by definition of m0. L

Returning to the proof of Lemma 17, consider the random set Si. In
order that (Si, i) be not good it is necessary that the random [k1(m),
k2(m)], 0 [ m [ m0 constructed by (a, b) are well-defined and satisfy (c, d).
The conditional probability (am, say) this holds for k1(m+1), k2(m+1) is
at most

(case (a, c)): 2(a+k2(m)−k1(m)) p=2(a+b(m)) p
(case (b, d)): (a+k2(m)) p=(a+b(m)) p.
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By Lemma 20 a+b(m) [ 2m+1(1+a) and so am [ 2m+2(1+a) p. So the
unconditional probability that (Si, i) is not good is at most

a(p) :=D
m0 −1

m=0
2m+2(a+1) p

[ 2 (m0+1)(m0+2)/2((a+1) p)m0

From the definition of m0 we have

2m0+1 [ n
a+1 [

1
p(a+1)

leading to

a(p) [ (p(a+1))m0/2−1

Then as p a 0

log a(p) ’ 1
2 m0 log p ’

1
2 log2 (1/p)× log p

establishing Lemma 17.

5.3. Remarks on the Proof of the Lower Bound

There is a shorter argument which leads to a cruder lower bound.
Take p=2−m and sites {0, 1, 2,..., 2m}. Apply the variational characteriza-
tion (3) to g=1A where A is the set of configurations reachable from the
basic (only site 0 occupied) configuration by paths using no more than
m−2 extra particles. Using straightforward calculations, and combinatorial
lemmas analogous to Lemma 2, one can prove that for each a > 0

y(p) \ (1p)
a log log(1/p) for all sufficiently small p

Heuristics along these lines were given in ref. 3

APPENDIX: SOME TECHNICAL BACKGROUND

The East process takes values in the space X={0, 1}Z. Give this space
the usual product topology and s-algebra, and let p be product Bernoulli
(p) measure. Write L2 for the space of p-square-integrable functions
f: XQ R and write C for the space of continuous functions f: XQ R.
Finally let

D1=3f ¥ C : C
k
sup

x
|f(xk)−f(x)| <.4
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where xk is the configuration obtained from x by flipping the kth coordi-
nate. The space D1 includes the space D of functions depending on only
finitely many coordinates. It will serve as a core (see, e.g., Liggett (14)

Chapter 1.3) for the generator of the East process.
For k ¥ Z and x ¥X define a measure on {0, 1} by

ck(x, y)=(1−p) 1(y=1, xk−1=1)+p1(y=0, xk−1=1)

Define a linear operator W on D by

Wf(x)= C
.

k=−.
C
1

y=0
1(xk=y)(f(x

k)−f(x)) ck(x, y)

Theorem 3.9 of ref. 14 shows (the conditions (3.3) and (3.8) being easy to
check) that the closure W̄ ofW is a generator of a Markov semigroup St on C.
This extends (ref. 14) Proposition 4.1) to a generator and semigroup on L2

with D1 as core; denote these also by W̄ and St. The semigroup specifies an
X-valued stochastic process Xt such that

E(f(Xt) | X0=x)=Stf(x); t ¥ [0,.), f ¥ L2

This is a precise construction of the East process. The operator W̄ is a self
adjoint unbounded operator on L2 with D1 as a core (ref. 14, Chapter 4.4).
The spectral theorem implies

W̄=F
.

0
lG(dl)

where G(l) is a resolution of the identity; that is, a family of projections on
L2 satisfying

G(l1) G(l2)=G(l1 Nl2)

lim
lQ.
G(l) f=f

lim
lQ 0
G(l) f=G(0) f

Writing s(W̄) for the support of G( · ), the spectral gap is defined as

gap(W̄) :=min{l > 0 : l ¥ s(W̄)}
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When we have weak convergence of reversible processes (generators
W̄n and W̄ say), we would like to conclude that

gap(W̄) \ lim sup
n

gap(W̄n) (A.1)

Reed and Simon (18) show that (A.1) holds provided the generators W̄n, W̄
have D as a common core and provided

||W̄nf− W̄f||2 Q 0 -f ¥D1

This can readily be checked for the East process on {0, 1, 2,..., n} and the
East process on {0, 1, 2,...}. In the paper we applied (A.1) to the wave
process (at the end of Sections 3.1 and 3.3), but this is just a similar
argument.
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